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† Dipartimento di Scienze Fisiche, Università di Napoli ‘Federico II’, Mostra d’Oltremare,
Pad. 19, I-80125 Napoli, Italy
‡ Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,
72 Tzarigrad Road, BG-1784 Sofia, Bulgaria

Received 21 October 1996, in final form 18 February 1997

Abstract. A method for expanding theq-deformedsuq(3) states into a classicalso(3) basis has
been developed. This expansion is used to compute the matrix elements of classical irreducible
tensor operators betweenq-deformed states. Examples of scalar products between deformed and
classical basis states and some of their properties are discussed.

1. Introduction

In a series of papers [1–8] a prescription for constructing basis states andq-deformed
irreducible tensor operators for the chainuq(3) ⊃ soq(3) was given in the case of the
most symmetric representation [λ, 0, 0] of uq(3). In our previous paper [9] a simplified
realization of the basis states was used to compute the reduced matrix elements of a special
second-rank tensor operator (q-deformed quadrupole operator). This scheme has a physical
valence only if observables and physical states can be described byq-deformed operators
and wavefunctions.

One may take a less extreme view and assume that the evolution of a physical system
is determined by a Hamiltonian of a classical form. In this conventional scheme, all
observables must be described by classical (undeformed) operators. Even in this context, it
is still legitimate to useq-deformed wavefunctions as long as they are viewed as (effective)
highly correlated eigenfunctions of the (undeformed) Hamiltonian.

In the present paper we take this latter view to describe the electromagnetic properties
of the ground band of a deformed system. We assume that the states of this band are
q-deformeduq(3) states in the symmetric representation [λ, 0, 0], while the electromagnetic
multipole operators are just classical irreducible tensor operators. We consider only
quadrupole transitions, which are of the utmost importance for the study of rotational spectra
in deformed nuclei. In order to achieve such a program first we shall recall some known
facts about the reductionuq(3) ⊃ soq(3) in the framework of the symmetric representations
of uq(3) (section 2) and then expand the resulting states in terms of the classicalso(3) basis
(section 3). A short conclusion follows. Finally, some technical aspects are illustrated in
appendices A and B.

2. uq(3)⊃ soq(3) basis states

It has been shown by Van der Jeugt [1, 2] that in the space of themost symmetricirreducible
representation [λ, 0, 0] of the q-deformeduq(3) algebra one can define three operators
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L+, L0, L−, which separate aq-deformedsoq(3) subalgebra ofuq(3). Then thesoq(3)
generators, corresponding to the embeddinguq(3) ⊃ soq(3), have the form [1]

L0 = N+ −N−
L+ = qN−− 1

2N0
√
qN+ + q−N+b†+b0+ b†0b−qN+−

1
2N0
√
qN− + q−N− (2.1)

L− = b†0b+qN−−
1
2N0
√
qN+ + q−N+ + qN+− 1

2N0
√
qN− + q−N−b†−b0

and satisfy the relations

[L0, L±] = ±L± [L+, L−] = [2L0]. (2.2)

Herein, [x] = (qx − q−x)/(q − q−1) and the parameterq is taken to be generic. In the
notation used in this paper thesoq(3) generators are expressed in terms of three independent
q-deformed boson operatorsbi andb†i , satisfying [10–12]

[Ni, b
†
i ] = b†i [Ni, bi ] = −bi bib

†
i − q±1b

†
i bi = q∓Ni i = +, 0,− (2.3)

whereNi are the corresponding number operators. Although (2.1) is not a subalgebra of
uq(3) considered as a Hopf algebra, in our context only theq-deformed relations for the
algebras are used.

In [9] it was shown that the operators (2.1) can be expressed in a simplified form if one
introduces the following ‘modified’q-deformed operators

B0 = q− 1
2N0b0 Bi = qNi+ 1

2bi

√
[2Ni ]

[Ni ]
i = +,− (2.4)

and the corresponding conjugate operators

B
†
0 = b†0q−

1
2N0 B

†
i =

√
[2Ni ]

[Ni ]
b
†
i q
Ni+ 1

2 i = +,−. (2.5)

Note that (2.5) are Hermitian conjugates of (2.4) only if the parameterq is real. The
operators (2.4) and (2.5) satisfy the standard commutation relations with the number
operators

[Ni, B
†
i ] = B†i [Ni, Bi ] = −Bi i = +, 0,−. (2.6)

Likewise, in the Fock space spanned on the normalized eigenstates of the number operators
N+, N0, N−, they satisfy the relations

[B0, B
†
0] = q−2N0 [Bi, B

†
i ] = [2]q4Ni+1 i = +,− (2.7)

and all other commutation relations are zero.
In terms of the ‘modified’ operators (2.4) and (2.5) thesoq(3)(L0, L±) and

spq2(2, R)(S0, (1/[2])S±) generators, corresponding to the embeddingsoq(3)⊕spq2(2, R) ⊂
spq(6, R), take the simplified form [3]

L0 = N+ −N− S0 = 2−1(N + 3/2)

L+ = q−L0+ 1
2B
†
+B0+ qL0− 1

2B
†
0B− S+ = (B†0)2q2S0 − B†+B†−q−2S0 (2.8)

L− = q−L0+ 1
2B
†
+B+ + qL0+ 1

2B
†
−B0 S− = q2S0(B0)

2− q2S0B+B−.

Now we shall recall the expression for the common eigenvectors ofN , L0 and the
Casimir operator ofsoq(3), C

(q)

2 = L−L+ + [L0][L0 + 1], in terms of the ‘modified’
operatorsB†m. Then we shall expressB†m in terms of the ‘standard’ (non-deformed) boson
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operatorsa†m ([am, a
†
n] = δnm). In this way we can find a connection between theq-deformed

and ‘standard’ angular momentum states.
Following [1, 2] and using the results of [9], the normalizedsoq(3) basis states, which

are characterized by theq-deformed angular momentumL, its projectionM and belong to
the symmetric [λ, 0, 0] irrep of uq(3), can be written in the form∣∣∣∣ λL,M

〉
q

= q−
1
2L

2

N
(q)

λL

√
[L+M]!

[2L]![L−M]!
(S+)

1
2 (λ−L)(L−)L−M

(B
†
+)L√

[2L]!!
|0〉 (2.9)

whereL = λ, λ− 2, . . . , 0 or 1, [x]! = [x][x − 1] . . . [1] and [x]!! = [x][x − 2] . . . [2] or
[1]. The normalization constantN(q)

λL in (2.9) equals

N
(q)

λL =
√

[λ− L]!![ λ+ L+ 1]!!

[2L+ 1]!!
(2.10)

and thesoq(3) scalar operatorS+ has the form

S+ = (B†0)2q2S0︸ ︷︷ ︸
ξ

−B†+B†−q−2S0︸ ︷︷ ︸
η

ηξ = q−4ξη. (2.11)

In order to represent the term(S+)
1
2 (λ−L) in powers ofB†i we use theq-binomial theorem

[13], according to which, if the elementsA andB satisfy the conditionBA = qAB then

(A− B)k =
k∑
t=0

(−1)tq
1
2 t (k−t)

[
k

t

]
q1/2

Ak−tBt where

[
k

t

]
q

= [k]q !

[t ]q ![k − t ]q !
. (2.12)

Therefore, for the power ofS+ we obtain

(S+)k = qk(k+ 1
2 )[2k]!!

k∑
t=0

(−1)tq−(2k+1)t

[2t ]!![2 k − 2t ]!!
(B
†
+)
t (B

†
0)

2(k−t)(B†−)
tq(k−2t)N . (2.13)

Using the identity

(L−)L−M

[L−M]!

(B
†
+)L

[2L]!!
|0〉 = q 1

2 (L
2−M2)

b(L+M)/2c∑
x=max(0,M)

(B
†
+)x

[2x]!!

(B
†
0)
L+M−2x

[L+M − 2x]!

(B
†
−)x−M

[2x − 2M]!!
|0〉 (2.14)

and the expansion (2.13) of(S+)k in powers ofB†i , the states (2.9) can be written in the
form [1, 3, 9]∣∣∣∣ λL,M

〉
q

= q 1
4 (λ−L)(λ+L+1)− 1

2M
2

√
[λ− L]!![ L+M]![L−M]![2L+ 1]

[λ+ L+ 1]!!

×
(λ−L)/2∑
t=0

b(L+M)/2c∑
x=max(0,M)

(−1)tq−(λ+L+1)t

[2t ]!![ λ− L− 2t ]!!

(B
†
+)x+t

[2x]!!

× (B
†
0)
λ+M−2x−2t

[L+M − 2x]!

(B
†
−)x+t−M

[2x − 2M]!!
|0〉. (2.15)

Furthermore, we shall represent the ‘modified’q-operatorsB†i in terms of the ‘standard’
boson operators using the well known construction ofq-deformed bosonsb†i , bi in terms of
the classical onesa†i , ai [10–12]

b
†
i =

√
[Ni ]

Ni
a
†
i bi = ai

√
[Ni ]

Ni
i = +, 0,−. (2.16)
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In this way the operatorsB†i , Bi can be written in the form

B0 = q− 1
2N0a0

√
[N0]

N0
Bi = qNi+ 1

2ai

√
[2Ni ]

Ni

B
†
0 =

√
[N0]

N0
a
†
0q
− 1

2N0 B
†
i =

√
[2N1]

Ni
a
†
i q
Ni+ 1

2

i = +,−. (2.17)

As a next step we can replaceB†i in (2.15) with their expressions from (2.17). Then, using
the following identity, which holds in the Fock space,

(B
†
+)x√

[2x]!!

(B
†
0)
y

√
[y]!

(B
†
−)z√

[2z]!!
|0〉 = q 1

2 (x
2+z2)− 1

4y(y−1) (a
†
+)x√
x!

(a
†
0)
y

√
y!

(a
†
−)z√
z!
|0〉 (2.18)

we obtain [3, 5]∣∣∣∣ λL,M
〉
q

= q− 1
4 {(2λ+M)(M−1)+L(L+1)}N(q)

λLM

(λ−L)/2∑
t=0

b(L+M)/2c∑
x=max(0,M)

× (−1)tq(λ−
1
2 )x−(L+ 3

2 )t

[2t ]!![ λ− L− 2t ]!!

√
[2x + 2t ]!![ λ+M − 2x − 2t ]![2x + 2t − 2M]!!

[2x]!![ L+M − 2x]![2x − 2M]!!

× (a
†
+)x+t√
(x + t)!

(a
†
0)
λ+M−2x−2t

√
(λ+M − 2x − 2t)!

(a
†
−)x+t−M√

(x + t −M)! |0〉 (2.19)

where the normalization factorN(q)

λLM is

N
(q)

λLM =
√

[λ− L]!![ L+M]![L−M]![2L+ 1]

[λ+ L+ 1]!!
. (2.20)

The expression (2.19) will be used for the calculation of the matrix elements of ‘standard’
(or classical) tensor operators (which are built up from standard boson operators) between
the states with givenq-deformed angular momentum.

Consider now the classical quadrupole operatorQ(c)
m . Its zero component is of the form

Q
(c)
0 =

√
6[a† ⊗ ã]20 = a†+ã− + 2a†0ã0+ a†−ã+

= − a†+a+ + 2a†0a0− a†−a− = 3N0−N. (2.21)

Herea†m, am(m = +, 0,−) are classical boson operators andãm = (−1)ma−m.
The explicit expression for the matrix elements ofQ

(c)
0 between theq-deformed states

(2.19) then becomes

q

〈
λ

J,M ′

∣∣∣∣Q(c)
0

∣∣∣∣ λL,M
〉
q

= δM,M ′
q

〈
λ

J,M

∣∣∣∣Q(c)
0

∣∣∣∣ λL,M
〉
q

(2.22)

and

q

〈
λ

J,M

∣∣∣∣Q(c)
0

∣∣∣∣ λL,M
〉
q

= (2λ+ 3M)δL,J − 6q−
1
2 (2λ+M)(M−1)− 1

4 {L(L+1)+J (J+1)}

×N(q)

λLMN
(q)

λJM

(λ−L)/2∑
t=0

(λ−J )/2∑
r=0

(−1)t+rq−(λ+L+1)t−(λ+J+1)r

[2t ]!![ λ− L− 2t ]!![2 r]!![ λ− J − 2r]!!

×
∑
x

[2x]!![ λ+M − 2x]![2x − 2M]!!

[2x − 2t ]!![ L+M − 2x + 2t ]![2x − 2t − 2M]!!

× xq(2λ−1)x

[2x − 2r]!![ J +M − 2x + 2r]![2x − 2r − 2M]!!
(2.23)
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where max{t, r,M+ t,M+ r} 6 x 6 min{b(L+M)/2c+ t, b(J +M)/2c+ r}. Obviously,
the recipe, described above, can be applied for the calculation of matrix elements between
the q-deformed angular momentum states of any classical operator. The disadvantage of
this method is that one must perform special calculations for any specific operator. This can
be avoided by the use of the transformation matrix between the ‘standard’ andq-deformed
states—a problem considered in the next section.

3. Transformation betweensoq(3) and so(3) basis states

For fixedλ, one can expand theq-deformed basis states (2.19) in terms of classical ones
(when q → 1), since both sets form orthonormal bases in the eigenspaceHλ of the
number operatorN = N+ + N0 + N−, corresponding to the eigenvalueλ. In particular,
dimHλ = 1

2(λ+ 1)(λ+ 2) and the operatorL0 has the same formL0 = N+ −N− in both
classical andq-deformed cases. In this way∣∣∣∣ λL,M

〉
q

=
∑
J,MJ

∣∣∣∣ λJ,MJ

〉
c c

〈
λ

J,MJ

∣∣∣∣ λL,M
〉
q

=
∑
J

∣∣∣∣ λJ,M
〉

c c

〈
λ

J,M

∣∣∣∣ λL,M
〉
q

(3.1)

whereJ = λ, λ− 2, . . . , |M| or |M| + 1 and the subscript ‘c’ denotes the classical (non-
deformed) basis states. Taking the scalar product betweenq-deformed (2.19) and classical
basis states, for the transformation matrix in (3.1) we obtain

c

〈
λ

J,M ′

∣∣∣∣ λL,M
〉
q

= δM,M ′q− 1
4 {(2λ+M)(M−1)+L(L+1)}N(c)

λJMN
(q)

λLM

×
(λ−L)/2∑
t=0

(λ−J )/2∑
r=0

(−1)t+rq−(λ+L+1)t

[2t ]!![ λ− L− 2t ]!! (2r)!!(λ− J − 2r)!!

×
∑
x

q(λ−
1
2 )x
√

[2x]!![ λ+M − 2x]![2x − 2M]!!

[2x − 2t ]!![ L+M − 2x + 2t ]![2x − 2t − 2M]!!

×
√
(2x)!!(λ+M − 2x)!(2x − 2M)!!

(2x − 2r)!!(J +M − 2x + 2r)!(2x − 2r − 2M)!!
(3.2)

where max{t, r,M + t,M + r} 6 x 6 min{b(L+M)/2c + t, b(J +M)/2c + r}. It should
be noted that the scalar product (3.2) is real and has the properties

c

〈
λ

J,M ′

∣∣∣∣ λL,M
〉
q

= δM,M ′
c

〈
λ

J,M

∣∣∣∣ λL,M
〉
q

=
q

〈
λ

L,M

∣∣∣∣ λJ,M ′
〉

c

(3.3)

which we have used in (3.1). Although looking very involved, the formula (3.2) is quite
handy for computational purposes. Indeed, only a few terms are contained in the sum. The
same equation shows that the transformation matrix is diagonal in the third projections of
J andL, and is non-vanishing even for high values of the difference1(J ) = |L − J |.
However, the values are peaked around the classical value1(J ) = 0 if the parameter of
deformationq tends to unity.

Consider now a classical tensor operatorA
(c)
jm of rank j according to the algebraso(3),

which conserves the number of particles. Using the Wigner–Eckart theorem in the classical
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case we can express the matrix elements ofA
(c)
jm between the classicalso(3) basis states in

the form

c

〈
λ

J,M ′

∣∣∣∣A(c)jm ∣∣∣∣ λL,M
〉

c

= (−1)2j
CJM

′
LM,jm√
2J + 1

〈λJ ||A(c)j ||λL〉 (3.4)

whereCJM
′

LM,jm are the classical Clebsch–Gordan coefficients of theso(3) algebra, and we

assume that the classical reduced matrix elements ofA
(c)
j in (3.4) are known. In this way,

from (3.1) it follows that

A
(c)
jm

∣∣∣∣ λL,M
〉
q

=
∑
R

A
(c)
jm

∣∣∣∣ λR,M
〉

c c

〈
λ

R,M

∣∣∣∣ λL,M
〉
q

=
∑
R

∑
P,MP

∣∣∣∣ λP,MP

〉
c c

〈
λ

P,MP

∣∣∣∣A(c)jm ∣∣∣∣ λR,M
〉

c c

〈
λ

R,M

∣∣∣∣ λL,M
〉
q

(3.5)

and using (3.4) we have the expansion

q

〈
λ

J,M ′

∣∣∣∣A(c)jm ∣∣∣∣ λL,M
〉
q

=
∑
R

∑
P

(−1)2j
CPM

′
RM,jm√
2P + 1 q

〈
λ

J,M ′

∣∣∣∣ λP,M ′
〉

c

×〈λP ‖A(c)j ||λR〉
c

〈
λ

R,M

∣∣∣∣ λL,M
〉
q

. (3.6)

In particular, equation (3.6) shows that the matrix elements of the classical tensor operator
A
(c)
jm betweenq-deformedsoq(3) states are non-vanishing ifM ′ = M+m, as in the classical

basis. It is also worth remarking that the summation expression (3.6) gives a universal way
for (numerical) computation of matrix elements of different types of classical operators
between deformed basis states (2.19). For instance, it is straightforward to show that the
numerical values of the quadrupole operator calculated by (2.23) of the previous section and
the method used in this section (involving transformation matrices) coincide. However, the
method descibed in this section is universal and can be applied to any particular classical
operators.

4. Conclusion

In order to be able to compute matrix elements ofclassical operators betweenq-deformed
uq(3) states we first constructed a simplified realization of thesoq(3) subalgebra ofuq(3),
restricted to symmetric representations, and then expanded the correspondingsoq(3) states
in terms of the classicalso(3) basis. This expansion should be of considerable help in the
study of the structure ofq-deformeduq(3) states. The results obtained could possibly be of
practical interest for clarifying the role ofq-deformation in the study of nuclear rotational
spectra [14–16] and their electromagnetic properties. It is known, for instance, that in the
classicalsu(3) scheme the nuclear rotational band terminates at a critical value of the angular
momentum, which is lower than the one observed experimentally. A numerical analysis
should enable us to ascertain if by the use ofq-deformedsu(3) states the critical value is
pushed upward. Another aspect worth of attention is represented by the deviations induced
by theq-deformation on the angular momentum dependence of the E2 strength with respect
to the corresponding laws predicted in the geometrical or classicalsu(3) models. Finally,
q-deformation will enable us to study the E2 forbidden transitions among the members of
the band, a problem without immediate solution in conventional approaches. Investigations
along these lines are under way.
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Appendix A. Expressions for angular momentum states in oscillator basis

The oscillator basis can be expressed as

|x, y, z〉 = (a
†
+)x√
x!

(a
†
0)
y

√
y!

(a
†
−)z√
z!
|0〉 = (b

†
+)x√
[x]!

(b
†
0)
y

√
[y]!

(b
†
−)z√
[z]!
|0〉

= q− 1
2 (x

2+z2)+ 1
4y(y−1) (B

†
+)x√

[2x]!!

(B
†
0)
y

√
[y]!

(B
†
−)z√

[2z]!
|0〉 (A.1)

wherea†m, b†m andB†m are ‘standard’,q-deformed and ‘modified’ boson creation operators,
the last two determined by (2.16) and (2.17). Equation (A.1) reflects the fact that the
oscillator basis built up in terms of ‘standard’,q-deformed and ‘modified’ boson operators
coincide [10–12].

According to (2.19) theq-deformed state with angular momentumL and maximal
projectionM = L can be written down in the form∣∣∣∣ L+ 2k
L,L

〉
q

= qk(L+1)

√
[2k]!![2L+ 1]!!

[2k + 2L+ 1]!![2L]!!

k∑
t=0

(−1)tq−
1
2 (2L+3)t

[2k − 2t ]!!

×
√

[2L+ 2t ]!![2 k − 2t ]!

[2t ]!!
|L+ t, 2k − 2t, t〉. (A.2)

Equation (A.2) gives the expression of the highest weightq-deformed state in terms of
oscillator states|x, y, z〉. On the other hand, the ‘classical’ angular momentum states can
also be expanded in the oscillator basis as follows:∣∣∣∣ J + 2k′

J,M

〉
c

=
√
(2k′)!!(J +M)!(J −M)!(2J + 1)

(2k′ + 2J + 1)!!

k′∑
s=0

(−1)s

(2s)!!(2k′ − 2s)!!

×
b 1

2 (J+M)c∑
p=max(0,M)

√
(2p + 2s)!!(2k′ + J +M − 2p − 2s)!(2p + 2s − 2M)!!

(2p)!!(J +M − 2p)!(2p − 2M)!!

×|p + s, 2k′ + J +M − 2p − 2s, p + s −M〉. (A.3)

Taking into account the orthonormality of the oscillator basis one can verify that

c

〈
λ′

J,M

∣∣∣∣ λL,L
〉
q

= δλ,λ′δL,M
c

〈
λ

J,L

∣∣∣∣ λL,L
〉
q

. (A.4)

In this way for the scalar product of (A.2) and (A.3) (i.e. for the transformation bracket in
(A.4)) we obtain

c

〈
L+ 2k
J, L

∣∣∣∣ L+ 2k
L,L

〉
q

= qk(L+1)

√
[2k]!![2L+ 1]!!

[2k + 2L+ 1]!![2L]!!
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×
√
(2k′)!!(J + L)!(J − L)!(2J + 1)

(2k′ + 2J + 1)!!

×
k∑
t=0

min(k′,t)∑
s=max(0,t ′)

(−1)t+sq−
1
2 (2L+3)t

[2k − 2t ]!! (2s)!!(2k′ − 2s)!!

√
[2L+ 2t ]!![2 k − 2t ]!

[2t ]!!

×
√
(2L+ 2t)!!(2k − 2t)!(2t)!!

(2L+ 2t − 2s)!!(J − L− 2t + 2s)!(2t − 2s)!!
(A.5)

where

k′ = (L+ 2k − J )/2= k − (J − L)/2 J = L,L+ 2, . . . , L+ 2k

t ′ = t − (J − L)/2= t − k + k′ λ′ = J + 2k′ = L+ 2k = λ.

Appendix B. Examples for some simple transformation brackets

Here we illustrate two simple examples of expansions of highest weight(M = L)

q-deformed angular momentum states (A.2) in terms of classical ones. Although these
expansions can directly be computed from equation (A.5), we shall give and further use
their explicit expressions in terms of oscillator states.

First let us consider the expansion of theq-deformed state withλ = L+ 2 in terms of
oscillator basis states∣∣∣∣ L+ 2
L,L

〉
q

= 1√
[2L+ 3]

{qL+1|L, 2, 0〉 − q− 1
2

√
[2L+ 2]|L+ 1, 0, 1〉}. (B.1)

On the other hand, for the ‘classical’ (non-deformed) states we have∣∣∣∣ L+ 2
L,L

〉
c

= 1√
2L+ 3

{|L, 2, 0〉 − √2L+ 2|L+ 1, 0, 1〉}∣∣∣∣ L+ 2
L+ 2, L

〉
c

= 1√
2L+ 3

{√2L+ 2|L, 2, 0〉 + |L+ 1, 0, 1〉}. (B.2)

Therefore theq-deformed state (B.1) can be represented as a linear combination of ‘classical’
states as follows:∣∣∣∣ L+ 2

L,L

〉
q

= α(1,L)0

∣∣∣∣ L+ 2
L,L

〉
c

+ α(1,L)1

∣∣∣∣ L+ 2
L+ 2, L

〉
c

. (B.3)

From (B.1) and (B.2) we obtain a system of equations, with solutions

α
(1,L)
0 =

c

〈
L+ 2
L,L

∣∣∣∣ L+ 2
L,L

〉
q

= C{qL+1+
√
(2L+ 2)[2L+ 2]q−

1
2 } (B.4)

α
(1,L)
1 =

c

〈
L+ 2
L+ 2, L

∣∣∣∣ L+ 2
L,L

〉
q

= C{√2L+ 2qL+1−
√

[2L+ 2]q−
1
2 } (B.5)

where

C = 1√
(2L+ 3)[2L+ 3]

and one can verify that the condition(α(1,L)0 )2+ (α(1,L)1 )2 = 1 holds.
In the same way, in the caseλ = L+ 4, we have the expansion∣∣∣∣ L+ 4

L,L

〉
q

= α(2,L)0

∣∣∣∣ L+ 4
L,L

〉
c

+ α(2,L)1

∣∣∣∣ L+ 4
L+ 2, L

〉
c

+ α(2,L)2

∣∣∣∣ L+ 4
L+ 4, L

〉
c

(B.6)
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where

α
(2,L)
0 = C0

{
q2L+2

√
3[3]+ 2qL+

1
2

√
[4][2L+ 2](L+ 1)

[2]

+2q−1
√

[2L+ 4][2L+ 2](L+ 2)(L+ 1)

}
(B.7)

α
(2,L)
1 = C1

{
2q2L+2

√
3[3](L+ 1)+ (2L+ 1)qL+

1
2

√
[4][2L+ 2]

[2]

−2q−1
√

[2L+ 4][2L+ 2](L+ 2)

}
(B.8)

α
(2,L)
2 = C2

{
2q2L+2

√
[3](L+ 1)(L+ 2)− 2qL+

1
2

√
3[4][2L+ 2](L+ 2)

[2]

+q−1
√

3[2L+ 4][2L+ 2]

}
(B.9)

and

C0 = B√
(2L+ 3)(2L+ 5)

C1 = B√
(2L+ 3)(2L+ 7)

C2 = B√
(2L+ 5)(2L+ 7)

B = 1√
[2L+ 3][2L+ 5]

.

Again one can verify the condition(α(2,L)0 )2+ (α(2,L)1 )2+ (α(2,L)2 )2 = 1.
At the end of this appendix we shall give an alternative form of the expansion (B.3),

using the zero component of the classical quadrupole operatorQ(c). Returning to the
expression (2.21) forQ(c)

0 , it follows that the action of this operator on the classical highest
weight so(3) states is

Q
(c)
0

∣∣∣∣ λL,L
〉

c

= a
∣∣∣∣ λL,L

〉
c

+ b
∣∣∣∣ λL+ 2, L

〉
c

(B.10)

where

a = − (2λ+ 3)L

2L+ 3
b = 6

2L+ 3

√
(λ− L)(λ+ L+ 3)(L+ 1)

2L+ 5
. (B.11)

Combining (B.3) and (B.10) in the caseλ = L+ 2, one finds∣∣∣∣ L+ 2
L,L

〉
q

= {β(1,L)0 + β(1,L)1 Q
(c)

0 }
∣∣∣∣ L+ 2
L,L

〉
c

(B.12)

where

β
(1,L)
0 = 1

6

√
2L+ 3

[2L+ 3]

{
(L+ 2)qL+1− (L− 4)

√
[2L+ 2]

2L+ 2
q−1/2

}
(B.13)

β
(1,L)
1 = 1

6

√
2L+ 3

[2L+ 3]

{
qL+1−

√
[2L+ 2]

2L+ 2
q−1/2

}
. (B.14)

In particular, from (B.13) and (B.14) it follows that whenq tends to unity the coefficient
(B.14) vanishes, which recovers the classical state.

It is worth mentioning, that formula (B.12) reveals a remarkable property of theq-
deformed states, namely that the particularq-deformed state withL = λ−2 can be obtained
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through the action of the classicalQ(c)
0 on the classical states. In this sense, the action of

Q
(c)
0 generates the deformation of the classical state. Consideration of the most general case

with L = λ− 2k is in progress.
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